Wednesday, December 23, 2015
Thursday, October 22, 2015
Aluminum Nitride, ALN Ceramic Components
Aluminum Nitride, AIN Ceramic Components
www.semixicon.com
Aluminum Nitride
Aluminum
Nitride (ALN) is unique technical ceramic material that combines quite high
thermal conductivity with excellent electrical resistivity and stable
mechanical and chemical properties, given this outstanding properties, it is
more frequently selected in the applications as below:
·
Wafer
chuck heaters
·
Circuit
carrier substrate in high power semiconductors
·
Chamber
parts for Semiconductor Processing Equipment
·
High
performance chip carrier for high power die
·
Heat
sink in LED lighting
·
Heat
radiation substrate
·
Aviation
& out space
·
Security
·
3-D
and laser Printers
·
Medical
. Industrialwww.semixicon.com
Wednesday, October 21, 2015
氮化铝陶瓷ALN F系列 (Aluminium Nitride Ceramic)
导热填充料-氮化铝粉
简介
中文名称:氮化铝
英文名称:ALuminum nitride
英文别名:ALuminium nitride; Aluminum nitride (ALN);[1]nitridoaluminum; aluminum nitrogen(-3) anion
CAS:24304-00-5
EINECS:246-140-8
分子式:ALN
分子量:40.9882
密度:3.26
晶胞结构:
说明:ALN是原子晶体,属类金刚石氮化物,最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成。
ALN+3H2O==催化剂===AL(OH)3↓+NH3↑
历史
氮化铝于1877年首次合成。至1980年代,因氮化铝是一种陶瓷绝缘体(聚晶体物料为 70-210 W‧m−1‧K−1,而单晶体更可高达 275 W‧m−1‧K−1 ),使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。氮化铝可通过氧化铝和碳的还原作用或直接氮化金属铝来制备。氮化铝是一种以共价键相连的物质,它有六角晶体结构,与硫化锌、纤维锌矿同形。此结构的空间组为P63mc。要以热压及焊接式才可制造出工业级的物料。物质在惰性的高温环境中非常稳定。在空气中,温度高于700℃时,物质表面会发生氧化作用。在室温下,物质表面仍能探测到5-10纳米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保护物质。但当温度高于1370℃时,便会发生大量氧化作用。直至980℃,氮化铝在氢气及二氧化碳中仍相当稳定。矿物酸通过侵袭粒状物质的界限使它慢慢溶解,而强碱则通过侵袭粒状氮化铝使它溶解。物质在水中会慢慢水解。氮化铝可以抵抗大部分融解的盐的侵袭,包括氯化物及冰晶石〔即六氟铝酸钠〕。
特性
(1)热导率高(约320W/m·K),接近BeO和SiC,是Al2O3的5倍以上;
(2)热膨胀系数(4.5×10-6℃)与Si(3.5~4×10-6℃)和GaAs(6×10-6℃)匹配;
(3)各种电性能(介电常数、介质损耗、体电阻率、介电强度)优良;
(4)机械性能好,抗折强度高于Al2O3和BeO陶瓷,可以常压烧结;
(5)纯度高;
(6)光传输特性好;
(7)无毒;
(8)可采用流延工艺制作。是一种很有前途的高功率集成电路基片和包装材料。
应用
有报告指现今大部分研究都在开发一种以半导体(氮化镓或合金铝氮化镓)为基础且运行於紫外线的发光二极管,而光的波长为250纳米。在2006年5月有报告指一个无效率的二极管可发出波长为210纳米的光波[1]。以真空紫外线反射率量出单一的氮化铝晶体上有6.2eV的能隙。理论上,能隙允许一些波长为大约200纳米的波通过。但在商业上实行时,需克服不少困难。氮化铝应用於光电工程,包括在光学储存介面及电子基质作诱电层,在高的导热性下作晶片载体,以及作军事用途。由于氮化铝压电效应的特性,氮化铝晶体的外延性伸展也用於表面声学波的探测器。而探测器则会放置於矽晶圆上。只有非常少的地方能可靠地制造这些细的薄膜。
氮化铝陶瓷
氮化铝陶瓷ALN F系列 (Aluminium Nitride Ceramic)
结构
氮化铝陶瓷ALN F系列是以氮化铝(ALN)为主晶相的陶瓷。ALN 晶体以〔ALN4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属六方晶系。化学组成 AL 65.81%,N34.19%,比重 3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为 2450°C。为一种高温耐热材料。热膨胀系数(4.0- 6.0)X10(-6)/°C。多晶 ALN 热导率达 260W/(m.k),比氧化铝高5-8 倍,所以耐热冲击好,能耐 2200°C的极热。此外,氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。
性能
ALN 陶瓷的性能与制备工艺有关。如热压烧结 ALN 陶瓷,其密度为 3 .2一 3 .3g/cm3,抗弯强度 350 一 400 MPa(高强型 900 MPa),弹性模量 310 GPa,热导率 20-30W/m*K,热膨胀系数 5.6x10(-6)K(-1)(25°C一 400°C)。机械加工性和抗氧化性良好。
应用
1、氮化铝ALN F系列粉末纯度高,粒径小,活性大,是制造高导热氮化铝陶瓷基片的主要原料。
2、氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。
3、氮化铝硬度高,超过传统氧化铝,是新型的耐磨陶瓷材料,可用于磨损严重的部位.
4、利用 ALN 陶瓷耐热耐熔体侵蚀和热震性,可制作GaAs晶体坩埚、AL蒸发皿、磁流体发电装置及高温透平机耐蚀部件,利用其光学性能可作红外线窗口。氮化铝薄膜可制成高频压电元件、超大规模集成电路基片等。
5、氮化铝耐热、耐熔融金属的侵蚀,对酸稳定,但在碱性溶液中易被侵蚀。ALN 新生表面暴露在湿空气中会反应生成极薄的氧化膜。利用此特性,可用作铝、铜、银、铅等金属熔炼的 坩埚和烧铸模具材料。ALN 陶瓷的金属化性能较好,可替代有毒性的氧化敏瓷在电子工业中广泛应用。
典型产品
氮化铝粉 ALN F 系列特点:
1. 高热导系数:320W/m*k
2. 高阻抗:体积电阻率 : > 10 Ω-cm
3. 低热膨胀系数
4. 高机械强度:摩氏硬度 9~10
5. 低介电损耗:不影响信号传输
我公司Thrutek氮化铝 ALN F 系列优点:
>>粒径分布集中
>>分散性好
>>金属杂质含量低
>>低含氧量
>>热膨胀系数低
>>规格齐全 ALN F 系列(2~20μm),并提供客户特殊粒径规格定制
>>抗水解能力强
Thrutek氮化铝粉 ALN F 系列应用广泛:
A.导热填充材料/添加剂
Thrutek氮化铝粉 ALN F 系列作为导热填充材料主要应用在ALN导热硅脂、ALN导热硅胶、ALN导热双面胶片、ALN导热胶片以及ALN纳米无机陶瓷车用润滑剂及抗磨剂。
B.EMC 添加剂、MCPCB 导热填充料、陶瓷介质电容
C.氮化铝粉 ALN F 系列烧结应用LED 氮化铝陶瓷基板,电源模块,半导体辐射散热器,坩埚,晶体生长蒸发器,高温阻燃材料,绝缘体,抗腐蚀零部件,贴片电阻等。
展望
由于具有优良的热.电.力学性能.氮化铝陶瓷引起了国内外研究者的广泛关注.随着现代科学技术的飞速发展.对所用材料的性能提出了更高的要求.氮化铝陶瓷也必将在许多领域得到更为广泛的应用!虽然多年来通过许多研究者的不懈努力.在粉末的制备_成形_烧结等方面的研究均取得了长足进展.但就目前而言.氮化铝的商品化程度并不高.这也是影响氮化铝陶瓷进一步发展的关键因素.为了促进氮化铝研究和应用的进一步发展.必须做好下面两个研究工作研究低成本的粉末制备工艺和方法!目前制约氮化铝商品化的主要因素就是价格问题。若能以较低的成本制备出氮化铝粉末.将会大大提高其商品化程度!高温自蔓延法和低温碳热还原合成工艺是很有发展前景的粉末合成方法.二者具有低成本和适合大规模生产的特点!研究复杂形状的氮化铝陶瓷零部件的净近成形技术如注射成形技术等.它对充分发挥氮化铝的性能优势.拓宽它的应用范围具有重要意义!
中文名称:氮化铝
英文名称:ALuminum nitride
英文别名:ALuminium nitride; Aluminum nitride (ALN);[1]nitridoaluminum; aluminum nitrogen(-3) anion
CAS:24304-00-5
EINECS:246-140-8
分子式:ALN
分子量:40.9882
密度:3.26
晶胞结构:
说明:ALN是原子晶体,属类金刚石氮化物,最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成。
ALN+3H2O==催化剂===AL(OH)3↓+NH3↑
历史
氮化铝于1877年首次合成。至1980年代,因氮化铝是一种陶瓷绝缘体(聚晶体物料为 70-210 W‧m−1‧K−1,而单晶体更可高达 275 W‧m−1‧K−1 ),使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。氮化铝可通过氧化铝和碳的还原作用或直接氮化金属铝来制备。氮化铝是一种以共价键相连的物质,它有六角晶体结构,与硫化锌、纤维锌矿同形。此结构的空间组为P63mc。要以热压及焊接式才可制造出工业级的物料。物质在惰性的高温环境中非常稳定。在空气中,温度高于700℃时,物质表面会发生氧化作用。在室温下,物质表面仍能探测到5-10纳米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保护物质。但当温度高于1370℃时,便会发生大量氧化作用。直至980℃,氮化铝在氢气及二氧化碳中仍相当稳定。矿物酸通过侵袭粒状物质的界限使它慢慢溶解,而强碱则通过侵袭粒状氮化铝使它溶解。物质在水中会慢慢水解。氮化铝可以抵抗大部分融解的盐的侵袭,包括氯化物及冰晶石〔即六氟铝酸钠〕。
特性
(1)热导率高(约320W/m·K),接近BeO和SiC,是Al2O3的5倍以上;
(2)热膨胀系数(4.5×10-6℃)与Si(3.5~4×10-6℃)和GaAs(6×10-6℃)匹配;
(3)各种电性能(介电常数、介质损耗、体电阻率、介电强度)优良;
(4)机械性能好,抗折强度高于Al2O3和BeO陶瓷,可以常压烧结;
(5)纯度高;
(6)光传输特性好;
(7)无毒;
(8)可采用流延工艺制作。是一种很有前途的高功率集成电路基片和包装材料。
应用
有报告指现今大部分研究都在开发一种以半导体(氮化镓或合金铝氮化镓)为基础且运行於紫外线的发光二极管,而光的波长为250纳米。在2006年5月有报告指一个无效率的二极管可发出波长为210纳米的光波[1]。以真空紫外线反射率量出单一的氮化铝晶体上有6.2eV的能隙。理论上,能隙允许一些波长为大约200纳米的波通过。但在商业上实行时,需克服不少困难。氮化铝应用於光电工程,包括在光学储存介面及电子基质作诱电层,在高的导热性下作晶片载体,以及作军事用途。由于氮化铝压电效应的特性,氮化铝晶体的外延性伸展也用於表面声学波的探测器。而探测器则会放置於矽晶圆上。只有非常少的地方能可靠地制造这些细的薄膜。
氮化铝陶瓷
氮化铝陶瓷ALN F系列 (Aluminium Nitride Ceramic)
结构
氮化铝陶瓷ALN F系列是以氮化铝(ALN)为主晶相的陶瓷。ALN 晶体以〔ALN4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属六方晶系。化学组成 AL 65.81%,N34.19%,比重 3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为 2450°C。为一种高温耐热材料。热膨胀系数(4.0- 6.0)X10(-6)/°C。多晶 ALN 热导率达 260W/(m.k),比氧化铝高5-8 倍,所以耐热冲击好,能耐 2200°C的极热。此外,氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。
性能
ALN 陶瓷的性能与制备工艺有关。如热压烧结 ALN 陶瓷,其密度为 3 .2一 3 .3g/cm3,抗弯强度 350 一 400 MPa(高强型 900 MPa),弹性模量 310 GPa,热导率 20-30W/m*K,热膨胀系数 5.6x10(-6)K(-1)(25°C一 400°C)。机械加工性和抗氧化性良好。
应用
1、氮化铝ALN F系列粉末纯度高,粒径小,活性大,是制造高导热氮化铝陶瓷基片的主要原料。
2、氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。
3、氮化铝硬度高,超过传统氧化铝,是新型的耐磨陶瓷材料,可用于磨损严重的部位.
4、利用 ALN 陶瓷耐热耐熔体侵蚀和热震性,可制作GaAs晶体坩埚、AL蒸发皿、磁流体发电装置及高温透平机耐蚀部件,利用其光学性能可作红外线窗口。氮化铝薄膜可制成高频压电元件、超大规模集成电路基片等。
5、氮化铝耐热、耐熔融金属的侵蚀,对酸稳定,但在碱性溶液中易被侵蚀。ALN 新生表面暴露在湿空气中会反应生成极薄的氧化膜。利用此特性,可用作铝、铜、银、铅等金属熔炼的 坩埚和烧铸模具材料。ALN 陶瓷的金属化性能较好,可替代有毒性的氧化敏瓷在电子工业中广泛应用。
典型产品
氮化铝粉 ALN F 系列特点:
1. 高热导系数:320W/m*k
2. 高阻抗:体积电阻率 : > 10 Ω-cm
3. 低热膨胀系数
4. 高机械强度:摩氏硬度 9~10
5. 低介电损耗:不影响信号传输
我公司Thrutek氮化铝 ALN F 系列优点:
>>粒径分布集中
>>分散性好
>>金属杂质含量低
>>低含氧量
>>热膨胀系数低
>>规格齐全 ALN F 系列(2~20μm),并提供客户特殊粒径规格定制
>>抗水解能力强
Thrutek氮化铝粉 ALN F 系列应用广泛:
A.导热填充材料/添加剂
Thrutek氮化铝粉 ALN F 系列作为导热填充材料主要应用在ALN导热硅脂、ALN导热硅胶、ALN导热双面胶片、ALN导热胶片以及ALN纳米无机陶瓷车用润滑剂及抗磨剂。
B.EMC 添加剂、MCPCB 导热填充料、陶瓷介质电容
C.氮化铝粉 ALN F 系列烧结应用LED 氮化铝陶瓷基板,电源模块,半导体辐射散热器,坩埚,晶体生长蒸发器,高温阻燃材料,绝缘体,抗腐蚀零部件,贴片电阻等。
展望
由于具有优良的热.电.力学性能.氮化铝陶瓷引起了国内外研究者的广泛关注.随着现代科学技术的飞速发展.对所用材料的性能提出了更高的要求.氮化铝陶瓷也必将在许多领域得到更为广泛的应用!虽然多年来通过许多研究者的不懈努力.在粉末的制备_成形_烧结等方面的研究均取得了长足进展.但就目前而言.氮化铝的商品化程度并不高.这也是影响氮化铝陶瓷进一步发展的关键因素.为了促进氮化铝研究和应用的进一步发展.必须做好下面两个研究工作研究低成本的粉末制备工艺和方法!目前制约氮化铝商品化的主要因素就是价格问题。若能以较低的成本制备出氮化铝粉末.将会大大提高其商品化程度!高温自蔓延法和低温碳热还原合成工艺是很有发展前景的粉末合成方法.二者具有低成本和适合大规模生产的特点!研究复杂形状的氮化铝陶瓷零部件的净近成形技术如注射成形技术等.它对充分发挥氮化铝的性能优势.拓宽它的应用范围具有重要意义!
Tuesday, October 20, 2015
Aluminum Nitride, AIN Ceramic Properties
Aluminum Nitride, AIN Ceramic PropertiesAluminum Nitride, formula AlN, is a newer material in the technical ceramics family. While its discovery occurred over 100 years ago, it has been developed into a commercially viable product with controlled and reproducible properties within the last 20 years.
General Aluminum Nitride InformationAluminum nitride has a hexagonal crystal structure and is a covalent bonded material. The use of sintering aids and hot pressing is required to produce a dense technical grade material. The material is stable to very high temperatures in inert atmospheres. In air, surface oxidation begins above 700°C. A layer of aluminum oxide forms which protects the material up to 1370°C. Above this temperature bulk oxidation occurs. Aluminum nitride is stable in hydrogen and carbon dioxide atmospheres up to 980°C. The material dissolves slowly in mineral acids through grain boundary attack, and in strong alkalis through attack on the aluminum nitride grains. The material hydrolyzes slowly in water. Most current applications are in the electronics area where heat removal is important. This material is of interest as a non-toxic alternative to beryllia. Metallization methods are available to allow AlN to be used in place of alumina and BeO for many electronic applications.Aluminum Nitride Engineering Properties*
|
Silicon Nitride (Si3N4) Properties and Applications
Silicon Nitride (Si3N4) Properties and Applications
Material: | Silicon Nitride (Si3N4) Properties and Applications |
Composition: | Si3N4 |
Property | Minimum Value (S.I.) | Maximum Value (S.I.) | Units (S.I.) | Minimum Value (Imp.) | Maximum Value (Imp.) | Units (Imp.) |
Atomic Volume (average) | 0.0058 | 0.006 | m3/kmol | 353.938 | 366.142 | in3/kmol |
Density | 2.37 | 3.25 | Mg/m3 | 147.954 | 202.891 | lb/ft3 |
Energy Content | 150 | 200 | MJ/kg | 16250.8 | 21667.7 | kcal/lb |
Bulk Modulus | 120 | 241 | GPa | 17.4045 | 34.9541 | 106 psi |
Compressive Strength | 524 | 5500 | MPa | 75.9998 | 797.708 | ksi |
Ductility | 0.00031 | 0.00169 | 0.00031 | 0.00169 | NULL | |
Elastic Limit | 60 | 525 | MPa | 8.70226 | 76.1448 | ksi |
Endurance Limit | 44 | 470 | MPa | 6.38166 | 68.1677 | ksi |
Fracture Toughness | 1.8 | 6.5 | MPa.m1/2 | 1.63808 | 5.9153 | ksi.in1/2 |
Hardness | 8000 | 30500 | MPa | 1160.3 | 4423.65 | ksi |
Loss Coefficient | 2e-005 | 5e-005 | 2e-005 | 5e-005 | NULL | |
Modulus of Rupture | 181 | 1050 | MPa | 26.2518 | 152.29 | ksi |
Poisson's Ratio | 0.23 | 0.28 | 0.23 | 0.28 | NULL | |
Shear Modulus | 65.3 | 127 | GPa | 9.47096 | 18.4198 | 106 psi |
Tensile Strength | 60 | 525 | MPa | 8.70226 | 76.1448 | ksi |
Young's Modulus | 166 | 297 | GPa | 24.0763 | 43.0762 | 106 psi |
Glass Temperature | K | °F | ||||
Latent Heat of Fusion | 930 | 1550 | kJ/kg | 399.826 | 666.377 | BTU/lb |
Maximum Service Temperature | 1346 | 1773 | K | 1963.13 | 2731.73 | °F |
Melting Point | 2661 | 2769 | K | 4330.13 | 4524.53 | °F |
Minimum Service Temperature | 0 | 0 | K | -459.67 | -459.67 | °F |
Specific Heat | 673 | 1100 | J/kg.K | 0.520807 | 0.851244 | BTU/lb.F |
Thermal Conductivity | 10 | 43 | W/m.K | 18.7203 | 80.4974 | BTU.ft/h.ft2.F |
Thermal Expansion | 1.4 | 3.7 | 10-6/K | 2.52 | 6.66 | 10-6/°F |
Breakdown Potential | 16 | 20 | MV/m | 406.4 | 508 | V/mil |
Dielectric Constant | 9.5 | 10.5 | 9.5 | 10.5 | NULL | |
Resistivity | 1e+016 | 1e+021 | 10-8ohm.m | 1e+016 | 1e+021 | 10-8 ohm.m |
Environmental Properties | |
Resistance Factors 1=Poor 5=Excellent | |
Flammability | 5 |
Fresh Water | 5 |
Organic Solvents | 5 |
Oxidation at 500C | 5 |
Sea Water | 5 |
Strong Acid | 4 |
Strong Alkalis | 3 |
UV | 5 |
Wear | 5 |
Weak Acid | 5 |
Weak Alkalis | 5 |
Monday, May 4, 2015
Geopbyte!
Megabytes, Gigabytes, Terabytes... What Are They?
These terms are usually used in the world of computing to describe disk space, or data storage space, and system memory. For instance, just a few years ago we were describing hard drive space using the term Megabytes. Today, Gigabytes is the most common term being used to describe the size of a hard drive. In the not so distant future, Terabyte will be a common term. But what are they? This is where it gets quite confusing because there are at least three accepted definitions of each term.
According to the IBM Dictionary of computing, when used to describe disk storage capacity, a megabyte is 1,000,000 bytes in decimal notation. But when the term megabyte is used for real and virtual storage, and channel volume, 2 to the 20th power or 1,048,576 bytes is the appropriate notation. According to the Microsoft Press Computer Dictionary, a megabyte means either 1,000,000 bytes or 1,048,576 bytes. According to Eric S. Raymond in The New Hacker's Dictionary, a megabyte is always 1,048,576 bytes on the argument that bytes should naturally be computed in powers of two. So which definition do most people conform to?
When referring to a megabyte for disk storage, the hard drive manufacturers use the standard that a megabyte is 1,000,000 bytes. This means that when you buy an 250 Gigabyte Hard drive you will get a total of 250,000,000,000 bytes of available storage. This is where it gets confusing because Windows uses the 1,048,576 byte rule so when you look at the Windows drive properties a 250 Gigabyte drive will only yield 232 Gigabytes of available storage space, a 750GB drive only shows 698GB and a One Terabyte hard drive will report a capacity of 931 Gigabytes. Anybody confused yet? With three accepted definitions, there will always be some confusion so I will try to simplify the definitions a little.
The 1000 can be replaced with 1024 and still be correct using the other acceptable standards. Both of these standards are correct depending on what type of storage you are referring.
Processor or Virtual Storage
· 1 Bit = Binary Digit
· 8 Bits = 1 Byte
· 1024 Bytes = 1 Kilobyte
· 1024 Kilobytes = 1 Megabyte
· 1024 Megabytes = 1 Gigabyte
· 1024 Gigabytes = 1 Terabyte
· 1024 Terabytes = 1 Petabyte
· 1024 Petabytes = 1 Exabyte
· 1024 Exabytes = 1 Zettabyte
· 1024 Zettabytes = 1 Yottabyte
· 1024 Yottabytes = 1 Brontobyte
· 1024 Brontobytes = 1 Geopbyte
· 1 Bit = Binary Digit
· 8 Bits = 1 Byte
· 1024 Bytes = 1 Kilobyte
· 1024 Kilobytes = 1 Megabyte
· 1024 Megabytes = 1 Gigabyte
· 1024 Gigabytes = 1 Terabyte
· 1024 Terabytes = 1 Petabyte
· 1024 Petabytes = 1 Exabyte
· 1024 Exabytes = 1 Zettabyte
· 1024 Zettabytes = 1 Yottabyte
· 1024 Yottabytes = 1 Brontobyte
· 1024 Brontobytes = 1 Geopbyte
· 8 Bits = 1 Byte
· 1024 Bytes = 1 Kilobyte
· 1024 Kilobytes = 1 Megabyte
· 1024 Megabytes = 1 Gigabyte
· 1024 Gigabytes = 1 Terabyte
· 1024 Terabytes = 1 Petabyte
· 1024 Petabytes = 1 Exabyte
· 1024 Exabytes = 1 Zettabyte
· 1024 Zettabytes = 1 Yottabyte
· 1024 Yottabytes = 1 Brontobyte
· 1024 Brontobytes = 1 Geopbyte
Disk Storage
· 1 Bit = Binary Digit
· 8 Bits = 1 Byte
· 1000 Bytes = 1 Kilobyte
· 1000 Kilobytes = 1 Megabyte
· 1000 Megabytes = 1 Gigabyte
· 1000 Gigabytes = 1 Terabyte
· 1000 Terabytes = 1 Petabyte
· 1000 Petabytes = 1 Exabyte
· 1000 Exabytes = 1 Zettabyte
· 1000 Zettabytes = 1 Yottabyte
· 1000 Yottabytes = 1 Brontobyte
· 1000 Brontobytes = 1 Geopbyte
This is based on the IBM Dictionary of computing method to describe disk storage - the simplest.
· 1 Bit = Binary Digit
· 8 Bits = 1 Byte
· 1000 Bytes = 1 Kilobyte
· 1000 Kilobytes = 1 Megabyte
· 1000 Megabytes = 1 Gigabyte
· 1000 Gigabytes = 1 Terabyte
· 1000 Terabytes = 1 Petabyte
· 1000 Petabytes = 1 Exabyte
· 1000 Exabytes = 1 Zettabyte
· 1000 Zettabytes = 1 Yottabyte
· 1000 Yottabytes = 1 Brontobyte
· 1000 Brontobytes = 1 Geopbyte
· 8 Bits = 1 Byte
· 1000 Bytes = 1 Kilobyte
· 1000 Kilobytes = 1 Megabyte
· 1000 Megabytes = 1 Gigabyte
· 1000 Gigabytes = 1 Terabyte
· 1000 Terabytes = 1 Petabyte
· 1000 Petabytes = 1 Exabyte
· 1000 Exabytes = 1 Zettabyte
· 1000 Zettabytes = 1 Yottabyte
· 1000 Yottabytes = 1 Brontobyte
· 1000 Brontobytes = 1 Geopbyte
Now let's go into a little more detail.
Bit:
A Bit is the smallest unit of data that a computer uses. It can be used to represent two states of information, such as Yes or No.
Byte:
A Byte is equal to 8 Bits. A Byte can represent 256 states of information, for example, numbers or a combination of numbers and letters. 1 Byte could be equal to one character. 10 Bytes could be equal to a word. 100 Bytes would equal an average sentence.
Kilobyte:
A Kilobyte is approximately 1,000 Bytes, actually 1,024 Bytes depending on which definition is used. 1 Kilobyte would be equal to this paragraph you are reading, whereas 100 Kilobytes would equal an entire page.
Megabyte:
A Megabyte is approximately 1,000 Kilobytes. In the early days of computing, a Megabyte was considered to be a large amount of data. These days with a 500 Gigabyte hard drive on a computer being common, a Megabyte doesn't seem like much anymore. One of those old 3-1/2 inch floppy disks can hold 1.44 Megabytes or the equivalent of a small book. 100 Megabytes might hold a couple volumes of Encyclopedias. 600 Megabytes is about the amount of data that will fit on a CD-ROM disk.
Gigabyte:
A Gigabyte is approximately 1,000 Megabytes. A Gigabyte is still a very common term used these days when referring to disk space or drive storage. 1 Gigabyte of data is almost twice the amount of data that a CD-ROM can hold. But it's about one thousand times the capacity of a 3-1/2 floppy disk. 1 Gigabyte could hold the contents of about 10 yards of books on a shelf. 100 Gigabytes could hold the entire library floor of academic journals.
Terabyte:
A Terabyte is approximately one trillion bytes, or 1,000 Gigabytes. There was a time that I never thought I would see a 1 Terabyte hard drive, now one and two terabyte drives are the normal specs for many new computers. To put it in some perspective, a Terabyte could hold about 3.6 million 300 Kilobyte images or maybe about 300 hours of good quality video. A Terabyte could hold 1,000 copies of the Encyclopedia Britannica. Ten Terabytes could hold the printed collection of the Library of Congress. That's a lot of data.
Petabyte:
A Petabyte is approximately 1,000 Terabytes or one million Gigabytes. It's hard to visualize what a Petabyte could hold. 1 Petabyte could hold approximately 20 million 4-door filing cabinets full of text. It could hold 500 billion pages of standard printed text. It would take about 500 million floppy disks to store the same amount of data.
Exabyte:
An Exabyte is approximately 1,000 Petabytes. Another way to look at it is that an Exabyte is approximately one quintillion bytes or one billion Gigabytes. There is not much to compare an Exabyte to. It has been said that 5 Exabytes would be equal to all of the words ever spoken by mankind.
Zettabyte:
A Zettabyte is approximately 1,000 Exabytes. There is nothing to compare a Zettabyte to but to say that it would take a whole lot of ones and zeroes to fill it up.
Yottabyte:
A Yottabyte is approximately 1,000 Zettabytes. It would take approximately 11 trillion years to download a Yottabyte file from the Internet using high-power broadband. You can compare it to the World Wide Web as the entire Internet almost takes up about a Yottabyte.
Brontobyte:
A Brontobyte is (you guessed it) approximately 1,000 Yottabytes. The only thing there is to say about a Brontobyte is that it is a 1 followed by 27 zeroes!
Geopbyte:
A Geopbyte is about 1000 Brontobytes! Not sure why this term was created. I'm doubting that anyone alive today will ever see a Geopbyte hard drive. One way of looking at a geopbyte is 15267 6504600 2283229 4012496 7031205 376 bytes!
Now you should have a good understanding of megabytes, gigabytes, terabytes and everything in between. Now if we can just figure out what a WhatsAByte is......:)
If you find this information useful, you can have it in the palm of your hand along with a byte converter. Check out our Byte Converter App here.
We have a very handy free byte converter tool that you can use to convert Bytes to Megabytes to Kilobytes to Gigabytes, and Vice Versa. We also have a data storage converter that will convert any data unit from a bit through an Exabyte. Check out the new converter here.
T
Tuesday, April 28, 2015
Zirconia Ceramic Components
(1), automotive oxygen sensor zirconia ceramic tube (HD-ZFCA):
zirconia function in the research and development of ceramic materials, with large domestic auto enterprises cooperation, and developed a vehicle's oxygen sensor of zirconia ceramics, the detection, Germany BOSCH wholly achieved the level of similar products companies.
2), oxygen sensor on the vehicle introduced
Auto oxygen sensor is a solid electrolyte oxygen sensor, the zirconia ceramic oxygen sensor is the core automotive components. Its output signal is stable and reliable, strong anti-jamming performance. Vehicle exhaust emissions used to measure the oxygen content.
One, working principle
Oxygen sensor installed in the exhaust pipe. The electrodes detect the first contact with the exhaust, and the other electrode contact with the outside air, oxygen concentration due to internal and external electrodes differences arising from a potential difference.
When the concentration in the combustion gas mixture under excessive working hours, exhaust oxygen concentration in the lower oxygen sensor output voltage reference voltage to above. When the gas mixture in thin air in the state of excessive working hours, the exhaust gas oxygen concentration increased, oxygen sensor output voltage reference voltage to the following. High output voltage = = exhaust concentrated mixture of low oxygen concentration
Low output voltage = = dilute mixture of high exhaust gas oxygen concentration
For example, in the burning vehicle management, electronic control unit (ECU) will be oxygen sensor output voltage into a control signal by controlling the fuel injection volume change of air and fuel mixture ratio. Through closed-loop control, and controlling the three-way catalytic devices, which can be achieved to minimize exhaust emissions. In addition, the engine performance can be at its best. And to improve combustion efficiency.
Second, the composition of
HTYG-3/HTYG-4HTYG-3/HTYG-4 automotive oxygen sensor from zirconium tubes, heating rods, seals, signal output cable and connector components.
Zirconium contents of a heating rods cavity, the appearance of zirconium with a layer of paint permeability of platinum electrode. Because platinum electrode contact with the exhaust, which covers the surface layer of the high permeability close adhesion of the ceramic protective layer. Exhaust protective layer can prevent the corrosion residue catalytic platinum electrode, so that sensors can guarantee a longer life.
Third, technical parameters
1, the oxygen sensor temperature
|
200 - 900℃ 200 - 900 ° C
|
2, storage temperature range
|
-40 - 100℃ -40 - 100 ° C
|
3, heater switch support after the opening of the exhaust temperature
|
100 - 600℃ 100 - 600 ° C
|
4, heater switch open to allow the maximum temperature
|
≤800℃ ≤ 800 ℃
|
5, hexagonal casing temperature sensor
|
≤500℃ ≤ 500 ℃
|
6, sealed sets of temperature cables
|
≤200℃ ≤ 200 ℃
|
7, the temperature connector cables
|
≤150℃ ≤ 150 ℃
|
8, the joint operating temperature
|
≤120℃ ≤ 120 ℃
|
9, the temperature gradient sensor front-end allows
|
≤100℃/S ≤ 100 ° C / S
|
10, sensor temperature gradient allowing hexagonal casing
|
≤500℃/S ≤ 500 ° C / S
|
11, the maximum load current
|
±1μA ± 1 µ A
|
12, heating heater rated voltage
|
12V 12 V
|
13, between the heater and sensor insulation resistance value
|
≥30MΩ ≥ 30 megohms
|
14, internal resistance sensors
|
≤250Ω ≤ 250 Ω
|
15, the air-fuel ratio range
|
12≤A/F≤17 ≤ 12 A / F ≤ 17
|
16, the output voltage
|
10 - 1000mV 10 - 1000mV
|
17, response time
|
≤200ms ≤ 200 ms
|
18, life
|
>1.0×105 Km > 1.0 × 105 Km
|
Using zirconia ceramic oxygen sensor control 10% of the extensive use in a thermal power plant, petroleum, chemicals, iron and steel industry, glass, ceramic industry, metallurgy, textiles and other light industries in the field of boiler, coking furnace, calcination furnace, glass ceramic sintering kilns, cement kilns are hot stoves, hot carburizing processing furnace, furnace annealing furnace in the atmosphere, such as the oxygen measurement and control, to conserve energy and reduce environmental pollution and the extension of the old furnace triple effect.
Subscribe to:
Posts (Atom)